
DOI 10.1007/s10898-005-6152-y
Journal of Global Optimization (2006) 36: 33–50 © Springer 2006

An Experimental Evaluation of Some Classification
Methods

M. DOUMPOS, E. CHATZI and C. ZOPOUNIDIS
Department of Production Engineering and Management, Financial Engineering Laboratory,
Technical University of Crete, University Campus, 73100 Chania, Greece (e-mail:
kostas@dpem.tuc.gr)

(Received 15 December 2005; accepted in final form 22 December 2005)

Abstract. The classification problem is of major importance to a plethora of research fields.
The outgrowth in the development of classification methods has led to the development of
several techniques. The objective of this research is to provide some insight on the relative
performance of some well-known classification methods, through an experimental analysis
covering data sets with different characteristics. The methods used in the analysis include
statistical techniques, machine learning methods and multicriteria decision aid. The results
of the study can be used to support the design of classification systems and the identifica-
tion of the proper methods that could be used given the data characteristics.

Key words: classification, machine learning, Monte Carlo simulation, multicriteria deci-
sion aid, Statistical techniques.

1. Introduction

The classification problem involves the assignment of some objects to a
set C of predefined classes. Each object is a multivariate vector in Rn, i.e.,
xi = (xi1, xi2, . . . , xin)

., where n is the number of attributes (independent
variables) and xij is the description of object xi on attribute xj . Given a
training sample with m observations (xi , ci), where ci ∈C denotes the class
label for the training object xi , the objective is to identify a classification
model that will assign all objects into one of the classes, as accurately as
possible.

In the literature, several methods have been proposed to develop classification
models. Traditionally, statistical techniques such as discriminant analy-
sis and logistic regression, have been dominating this field. Alternative
non-parametric methods include, operations research methods (mathemat-
ical programming, multicriteria decision aid; Stam, 1997; Doumpos and
Zopounidis, 2002; Zopounidis and Doumpos, 2002), rule induction algorithms
and decision trees (Breiman et al., 1984), neural networks (Ripley, 1996),
nearest–neighbor algorithms (NN) (Duda et al., 2001), kernel methods
(Vapnik, 1998; Schölkopf and Smola, 2002), rough sets (Pawlak, 1982), etc.
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During the past two decades several experimental studies have been
presented considering mainly statistical methods and mathematical pro-
gramming techniques. Freed and Glover (1986) compared thee linear pro-
gramming (LP) models to linear discriminant analysis (LDA) through a
Monte Carlo analysis. The results showed that LP models outperformed
LDA, but some of them were found sensitive to outliers. Joachimsthaler
and Stam (1988) also considered quadratic discriminant analysis (QDA)
and logistic regression (LOG) and found that QDA provided better results,
especially when there were significant differences in the class variance–
covariance matrices. Similar results on the performance of LP models rela-
tive to QDA were also obtained by Rubin (1990). Östermark and Höglund
(1998) extended the previous results to multi-class problems and compared
LP models to statistical methods and the recursive partitioning algorithm
(RPA), observing that when there are significant differences in the mis-
classification costs, then some LP approaches and RPA provide the best
results. In a more recent study, Sueyoshi (2006) compared two mixed inte-
ger programming (MIP) models to statistical methods, neural networks
and a decision tree algorithm, using both real-world data as well as a
Monte Carlo simulation. The results showed that a two-stage MIP model
outperformed all the other approaches in almost all situations. Sandri and
Marzocchi (2004) performed an extensive analysis of several machine learn-
ing algorithms and statistical techniques, including decision trees, LDA,
and NN; they found that NN performed poorly compared to the other
methods, mainly for non-normal data and in the presence of irrelevant
attributes.

The outgrowth in the classification research over the recent years led to
the development of many other popular methods which have not been con-
sidered in prior experimental studies. This finding highlights the importance
of extending the prior experimental results. Based on this motivation, this
study considers a variety of parametric and non-parametric techniques in a
Monte Carlo experimental analysis. Three statistical techniques (linear dis-
criminant analysis, quadratic discriminant analysis, logistic regression), and
five non-parametric techniques (NN, probabilistic neural networks, sup-
port vector machines, multicriteria decision aid), are used in the analysis.
Except for the variety of the methods used in this study, another impor-
tant feature of this research involves the analysis of both continuous and
discrete data.

The rest of the paper is organized as follows: the next section briefly
outlines the seven classification methods used in analysis, followed by the
description of the experimental design and the presentation of the obtained
results. The final section concludes the paper and suggests directions for
future research.
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2. Classification Methods

2.1. linear and quadratic discriminant analysis

Linear discriminant analysis (LDA) is a multivariate statistical classification
method. The objective of LDA is to obtain a linear combination of the
independent variables (attributes) that maximizes the variance between the
classes relative to within-class variance. In the simplest two-class case,
this leads to a linear discriminant function f (x) = γ + a�x, where γ is
a constant term and a is a column vector consisting of the discriminant
coefficients of the decision attributes. Given the discriminant scores of the
objects their classification is performed in a straightforward way through
the introduction of a discriminant cut-off point, which is estimated accord-
ing to the a priori probabilities of class membership and the misclassi-
fication costs. The parameter estimation process is based on two major
assumptions: (a) the independent variables are multivariate normal, and (b)
the class variance–covariance matrices are equal.

Quadratic discriminant analysis (QDA) extends LDA through the use of
a quadratic discriminant function f (x) = γ + a�x + x�Bx, where B is a
n×n symmetric matrix with the discriminant coefficients bij for each prod-
uct xixj . The parameters of the quadratic discriminant function (constant
term γ , discriminant coefficients a and B) are estimated under the assump-
tions that the decision attributes are multivariate normal and the class var-
iance–covariance matrices are unequal.

2.2. logistic regression

Logistic regression (LOG) has become increasingly popular as an alterna-
tive to LDA and QDA. The main advantage of LOG over LDA and QDA
is that it does not impose assumptions of the statistical distribution of the
data or the structure of the class dispersion matrices. LOG uses the logis-
tic function to model the posterior probability of class membership given
the attribute vector x as f (x)= [1+ exp(−γ −a�x)

]−1
. Based on the esti-

mated posterior class membership probability f (x) an object is classified,
using a cut-off probability point estimated so as to minimize the classifica-
tion error. The model’s coefficients are obtained through maximum likeli-
hood estimation techniques.

2.3. nearest–neighbor algorithms

Nearest–neighbor algorithms (NN) have been extensively used as
non-parametric density estimation techniques (Wong and Lane, 1983). In
NN the classification of any object xi is based on the assessment of its sim-
ilarity to the training objects. The objective is to identify a set K consisting
of the k most similar to xi training objects and then to take the classification



36 M. DOUMPOS ET AL.

decision through a simple majority vote (i.e., assign xi to the class that
appears most frequently within the set K). The Euclidian distance is
used to assess the similarity between any two objects. The number k of
nearest–neighbors defines the level of smoothing for the decision region. In
this study, several experiments were performed with different values for k,
and finally k = 5 (five nearest–neighbors) was selected as the one providing
good results. The advantages of NN involve their simple implementation and
robust behavior for large data sets, whereas the main disadvantage involves
the large storage and computational requirements (for large data sets).

2.4. probabilistic neural networks

Probabilistic neural networks (PNN) can be realized as a network of three
layers (Specht, 1990). The input layer includes n nodes, each corresponding
to one attribute. The inputs of the network are fully connected with the m

nodes of the pattern layer. Each node of the pattern layer corresponds to
one training object. The input xi to a pattern node j is passed to an expo-
nential activation function that produces the output of the pattern node
j (σ is a user defined smoothing parameter):

Outputj = exp
(
−∥∥xj −xi

∥∥2
/

2σ 2
)

The outputs of the pattern nodes are passed to the summation layer. In
the case of dichotomous classification, the summation layer consists of two
nodes each corresponding to one class. The pattern nodes corresponding
to training objects from class 1 are connected only to the summation node
corresponding to this class. The summation nodes simply sum the output
of the pattern nodes to which they are connected with. This summation
provides the outputs f1(x) and f2(x) for an input vector x. An object xi

is classified in class 1 if f1(x)>f2(x); otherwise it is classified in class 2.

2.5. support vector machines

Support vector machines (SVM) have become a popular classification
method since the mid-1990s (Vapnik, 1998). The SVM are based on the
structural risk minimization principle, which characterizes the performance
of a model in terms of the trade-off between the training error rate and the
class separating margin that is related to the complexity of the model.

For a dichotomous problem, with a linear separating function, the objec-
tive of SVM is to develop an optimal hyperplane f (x)= γ + a�x such that
f (x)>0 iff an object belongs in class 1. The class separating margin defined
for such a hyperplane is 2

/‖a‖. Thus, a quadratic programming problem is
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formulated to estimate the parameters of the model (vector a and constant
γ ). In the general non-linear case, the input data are non-linearly mapped to
a higher dimensional space F (feature space) and the above linear analysis is
then performed in F . The non-linear mapping is performed using an appro-
priate kernel function K. With the introduction of the kernel function, the
model takes the form f (x) = γ + K(x�,A�)a, where A ∈ Rm×n is an m × n

matrix with the training data, K is the kernel function that defines a non-
linear mapping of the column vector x ∈ Rn×1 into R1×m, and a is a m × 1
column vector. Popular kernel functions include the polynomial kernel, the
radial basis kernel and the sigmoid kernel (Schölkopf and Smola, 2002). In
this study the radial basis kernel is used.

2.6. the utadis method

The UTADIS method is a multicriteria decision aid classification method
(Doumpos and Zopounidis, 2002). The method develops an additive utility
classification model U(x)=p1u1(x1)+p2u2(x2)+· · ·+pnun(xn), where pi is
an non-negative weight for attribute xi (p1 + p2 + · · · + pn = 1), and ui(xi)

is the corresponding marginal utility function defined in a piece-wise linear
form. On the basis of this functional representation form, in a dichotomous
case, an object xi is classified in class 1 iff U(xi) � t , where t is a cut-off
point. The parameters of the classification model (marginal utilities, attri-
butes’ weights, cut-off point) are estimated through a linear programming
approach that minimizes the classification error for the training objects. A
post-optimality analysis is also employed to investigate the robustness of the
obtained optimal solution (Doumpos and Zopounidis, 2002).

3. Experimental Design

The main objective of this research is to examine the relative perfor-
mance of the considered methods in terms of different data characteris-
tics. Throughout the experiment two-class data sets are considered in R5

(five decision attributes). The restriction of the analysis to the two-class
case is due to the fundamental character of dichotomous problems in clas-
sification research. Actually, any multi-class problem can be decomposed
into a series of dichotomous problems using appropriate techniques (e.g.,
error-correcting output coding; Dietterich and Bakiri, 1995). On the other
hand, the consideration of a small number of attributes (five attributes)
is based on the finding that in real-world situations the objective is to
develop a reliable classification model based on limited information. Even,
when a large set of attributes is available, attribute selection techniques
(John et al., 1994) are often employed to reduce the dimensionality of the
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Table 1. Factors describing the data characteristics in the experimental analysis

Continuous data Discrete data

Factors Scenarios Factors Scenarios

Distribution Normal Discrete levels Two
Log-normal Three
Mixture Mixture

Class separation Linear Class separation Linear
Non-linear Non-linear

Training objects 200 Training objects 200
500 500
1000 1000

Correlation Low Correlation Low
High High

problem and to eliminate redundant attributes. Therefore, analyzing the
performance of the methods given a small set of attributes is well-suited to
real-world situations.

Given the above two settings (two classes, five attributes) different factors
are selected to describe other characteristics of the data sets such as: the
nature of the data (continuous, discrete), the statistical distribution of the
data, the number of training objects, the correlation between the decision
attributes, and the separation of the classes. Table 1 summarizes the factors
considered in the analysis, whereas the following two sub-sections describe
in more details the design of the experiment for both the continuous and
the discrete data.

3.1. continuous data

3.1.1. Data Distribution

The data are generated from two distributions. In the first case, the stan-
dard normal distribution is used. Normality is a common assumption to
statistical classification methods (LDA, QDA) and its consideration in the
comparison provides a reference (benchmark) point. The alternative sce-
nario involves the generation of log-normal variables with unit variance
and mean of 1.87. The consideration of the log-normal distribution in
this analysis is based on its popularity in modeling many real-world situ-
ations (for instance, a common assumption in finance is that returns are
log-normally distributed).

Of course in a real-world situation it is unlikely that all attributes will
follow a common distribution. Therefore, it was decided to consider in the
analysis a situation where the attributes come from different distributions.
This was performed considering two of the five decision attributes as stan-
dard normal random variables and the remaining three attributes as log-
normal variables with the aforementioned parameters.
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3.1.2. Type of Class Separation

The way that the classes are separated is an important factor affecting the
performance of a classification model. Two scenarios are considered for this
factor. In the first case it is assumed that the classes are nearly linearly
separable. Some popular classification methods such as LDA and logis-
tic regression develop linear classification models. Given, that in a real-
world situation one cannot preclude the case of near linear separability,
it is important to investigate the performance of the methods in this case,
mainly for the methods that develop non-linear models (QDA, NN, PNN,
SVM, UTADIS). To model the linearly separable case, a linear classifica-
tion rule is imposed:

f (xi)>0 ⇔ xi ∈Class 1,

f (xi)<0 ⇔ xi ∈Class 2,
(1)

where f (x)= a�x is a linear function of the decision attributes where a is
taken as a uniformly distributed random vector in [1, 10].

Of course, perfect linear separation is rarely observable in practice,
whereas near-linear separation is possible. Therefore, a 10% level of noise
is imposed on the above classification rule, through the perturbation of
the class assignment of the objects as defined by the rules (1). The level
of noise introduced in the data was selected so as to ensure a reasonable
amount of error rate.

The second scenario considered in the analysis involves the case where
the classes are not linearly separable. Non-linear separability is considered
using the classification rule (1) with a quadratic discriminant function
f (x) = a�x + x�Bx, where the elements of a and B are modeled as uni-
form random variables, with ai ∈ [1, 10], bii ∈ [0, 2], and bij ∈ [−2,2] for all
i, j = 1,2, . . .,5 (i �= j). These specifications were selected to ensure a rea-
sonable separability of the classes. Similarly to the linear case, a 10% level
of noise is imposed to the quadratic classification rule.

It should be noted that the use of linear and quadratic rules for the sep-
aration of the classes does not necessarily favor LDA and QDA, since both
methods are based on specific statistical assumptions (multivariate normal-
ity with equal/unequal class dispersion matrices). The use of the two clas-
sification rules in this study does not imply any of these assumptions.

3.1.3. Number of Training Objects

The size of the training sample as defined by the number of training
objects is an important factor for the performance of a classification sys-
tem. Generally, as additional information is added to the training sam-
ple (new training objects), the development of a classification model is
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expected to provide more reliable and robust results. However, the impact
of this factor is not the same for all methods (e.g., some methods may per-
form well even with small training sets, whereas other may be more suitable
for larger training sets). To model this factor in the experiment, three sce-
narios are considered each corresponding to different number of training
objects: 200, 500, and 1000 objects.

3.1.4. Correlation

The correlation between the decision attributes is another factor which has
important implications in the development of classification models. Low-
correlation corresponds to cases where each individual attribute provides
different information compared to other attributes, whereas high correla-
tion indicates possible redundancy in the set of attributes. Multicollinear-
ity issues also arise when considering correlated attributes, which may lead
to model instability. The consideration of both cases (low and high corre-
lation) in this experimental analysis enables the investigation of the perfor-
mance of the methods in both situations. In modeling the low-correlation
case, the attributes are generated as independent random variables. To gen-
erate data with high correlation, initially, the description xi1 of each object
xi on the first attribute x1 is generated according to the selected distribu-
tion. Then, the description xij of each object xi on the remaining attributes
xj (j =2, . . .,5) is generated as follows:

xij = 1
j −1

j−1∑

k=1

xik +γij ,

where γij is a random variable with the same distribution with one used for
the decision attributes (either standard normal distribution or log-normal
distribution).

3.2. discrete data

For the generation of discrete data, the factor involving the statistical dis-
tribution used for the continuous case, is replaced with the form of the
discrete data. In particular, three settings (scenarios) are considered. In
the first setting, binary {−1,1} data are randomly generated. The second
scenario involves the generation of discrete random data with three lev-
els {−1,0,1}, and finally a mixture of the two scenarios is also examined
[two attributes modeled as binary {−1,1} and the remaining three attri-
butes modeled with three levels as {−1,0,1}].

The approach used to generate correlated discrete data is similar to the
one employed for the continuous case. Initially, the description xi1 of each
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object xi on the first attribute x1 is generated according to the selected
distribution. Then, the description xij of each object xi on the remaining
attributes xj (j =2, . . .,5) is generated as follows:

xij = δij sgn

(
1

j −1

j−1∑

k=1

xik +ργij

)

,

where δij is a discrete binary {−1,1} random variable such that Pr(δij =1)

=0.8 and Pr(δij =−1)=0.2, γij is a random variable uniformly distributed
in [−1,1], and ρ is a constant set as ρ =0.001 for binary {−1,1} data, and
ρ = 0 for the three-level data {−1,0,1}. All discrete attributes are finally
decoded into appropriate dummy variables.

The remaining two design factors (number of training objects and type
of class separation) are used in the same way as the case of continuous
data.

3.3. data generation

On the basis of the methodology described in the preceding sub-sections to
model continuous and discrete data, the data generation process was imple-
mented as follows. For each combination of the factors 30 replications are
performed (overall there are 72 combinations of the design factors). At
each replication, initially, 5000 training and 5000 testing objects are gen-
erated in R5. All objects are then classified with the classification rules
of Section 3.1.2. Depending on the selected number of training objects
(m=200, m=500 or m=1000, cf. Section 3.1.3), a random selection is per-
formed from the 5000 objects generated for training. The random selection
is performed such that the classes are balanced in the training sample. The
testing samples are compiled in a similar way. Throughout the experiment,
all testing samples consist of 500 cases (250 from each class).

It should be noted that the selection of balanced class sizes for both
training and validation does not pose a significant limitation on the results.
Of course, in many real world situations there is a considerable unbalance
(asymmetry) between the classes. Developing a model without taking such
an asymmetry into consideration is highly likely to lead to biased results
towards the larger class. In such a situation, even if the overall accuracy
rate is high, the resulting model cannot be accepted. The problem, how-
ever, can be easily addressed in various ways. For instance, the classifica-
tion rule can be adjusted taking into consideration the prior probabilities
or misclassification costs. Alternatively, for some algorithms it is possible to
weight the training cases. The aim of such techniques is to overcome the
unbalance of the classes. Thus, taking equal class sizes in this experimental
analysis is not an unrealistic setting.
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Table 2. Overall average test error rates (in %)

LDA 15.20 (3)
QDA 16.53 (4)
LOG 14.63 (2)
NN 22.40 (5)
PNN 14.67 (2)
SVM 13.70 (1)
UTADIS 14.25 (2)

Overall, the experimental analysis involves a 2×3×2×3×2×7 full-level
factorial design with 2160 training samples (30 replications for each of the
72 combinations of the design factors) matched with the same number of
testing samples.

4. Analysis of Results

The results are analyzed in terms of the test error rates of the meth-
ods using the transformation 2 arcsin

√
error rate for variance stabilization

(Joachimsthaler and Stam, 1988). Table 2 illustrates the overall average test
error rate for all methods along with the Tukey’s grouping (Yandell, 1977)
at the 5% level (in parentheses). The overall results show that SVM provide
the most accurate classification followed by UTADIS, LOG, and PNN. On
the other hand, the worst results are obtained with the NN algorithm.

A further analysis of variance (ANOVA) of the results is employed to
perform a further investigation of the performance of the methods in terms
of the factors used in the experiment. The ANOVA results showed several
effects involving interactions between the methods with other factors to be
significant at the 5% level. The effects with the highest explanatory power
(measured with the Hays ω2 statistic; Cohen, 1988) are shown in Table 3
and they are analyzed in the subsequent sub-sections.

Table 3. Major explanatory effects of the classification performance of the methods (ANOVA results)

Effects Degrees of freedom Mean squares F ω2(%)

Methods 6 1.936 2495.12 23.72
Data type×methods 6 1.184 1526.19 14.50
Data type×correlation×methods 6 0.583 751.37 7.14
Class separation 1 2.212 2851.58 4.52
Correlation×methods 6 0.275 354.97 3.37
Data type 1 1.103 1422.47 2.25
Training objects×methods 12 0.087 111.92 2.11
Data type×training objects×methods 12 0.086 111.20 2.10
Class separation×methods 6 0.132 170.72 1.61
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Table 4. Test error rates (in %) with respect to the type of data

Continuous Discrete F (p-value)

LDA 16.66 (3) 13.74 (3) 312.87 (<0.01)
QDA 19.27 (5) 13.79 (3) 1381.29 (<0.01)
LOG 16.06 (2) 13.20 (2–3) 299.47 (<0.01)
NN 18.15 (4) 26.64 (4) 593.98 (<0.01)
PNN 17.02 (3) 12.32 (1) 996.29 (<0.01)
SVM 14.46 (1) 12.94 (2) 178.57 (<0.01)
UTADIS 15.74 (2) 12.76 (1–2) 406.47 (<0.01)

4.1. the effect of the data type

The impact of the type of data on the test error rates of the methods
is presented in Table 4. For each method the ANOVA results (F statis-
tic and the associated p-value) are also reported to compare the statis-
tical significance of the differences between the cases of continuous and
discrete data. The results clearly show that the performance of all meth-
ods (except NN) is significantly improved when discrete data are consid-
ered. The relative improvement is higher for QDA and PNN, whereas for
SVM the improvement is limited compared to the other methods. In the
case of continuous data SVM provide the best results followed by UTADIS
and logistic regression. For the case of discrete data, the best results are
obtained with PNN, followed by UTADIS and SVM. These results indicate
that SVM and UTADIS are the more robust approaches providing good
results for both discrete and continuous data. On the other hand, methods
such as QDA, NN, and PNN are quite sensitive to the type of data used.

4.2. the effect of the type of class separation

As expected the type of class separation has a significant impact on the
performance of the methods. The corresponding results of Table 5 clearly
demonstrate the deterioration in the performance of most methods when
a non-linear separation of the classes is evident. Actually, NN is the only
method for which no significant differences are observed between linear
and non-linear separation. For the methods that lead to non-linear mod-
els (QDA, NN, PNN, and SVM), the increase in the error rates in the
case of non-linear separation is smaller compared to the other methods. On
the other hand, the increase in the error rate of LDA, LOG, and UTA-
DIS is higher. LDA and LOG lead to the development of linear models,
whereas the piece-wise linear model of UTADIS does not consider interac-
tions between the attributes. Overall, in the linear case UTADIS and LOG
provide the lowest error rates followed by SVM and LDA. Non-linear
methods such as QDA, NN, and PNN perform poorly in this case. SVM
also lead to highly non-linear models, but their emphasis on complexity
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Table 5. Test error rates (in %) with respect to the type of class separation

Linear Non-linear F (p-value)

LDA 13.12 (2) 17.28 (3) 734.11 (<0.01)
QDA 15.87 (4) 17.19 (3) 46.63 (<0.01)
LOG 12.46 (1) 16.79 (3) 836.73 (<0.01)
NN 22.13 (5) 22.66 (4) 2.43 (0.12)
PNN 13.79 (3) 15.55 (2) 96.13 (<0.01)
SVM 13.08 (2) 14.31 (1) 103.51 (<0.01)
UTADIS 12.45 (1) 16.06 (2) 625.64 (<0.01)

control seems to enable the avoidance of overfitting. In the non-linear case,
SVM provide the best results followed by PNN and UTADIS. Overall,
the results show that despite the flexibility of non-linear models, overfitting
can be an issue when linear or near-linear class separation is evident. The
complexity control approach implemented in SVM seems to be an efficient
approach to address this issue.

4.3. the effect of the number of training objects

Generally, as the training sample size increases, one should expect that the
error rate will decrease (except for cases where the additional information
incorporated in additional training examples is noisy). As demonstrated in
Table 6, this expectation is supported by the results of this analysis. Except
for NN the error rates for all the other methods decrease as the number
of training objects increases (as it will be shown later, for increase for the
NN is due to the poor performance on discrete data). The rate of improve-
ment is higher when 500 training objects are used instead of 200, whereas
the differences between 1000 and 500 objects are (in most methods) limited.
In particular, the rate of decrease in the error rate when 500 objects are
used instead of 200 ranges between 9.07 (LOG) and 10.97% (SVM) with
an average of 9.42%. On the other hand, when comparing the test error
rates for 1000 training objects as opposed to the use of 500 objects, the rate
of decrease ranges between 0.44 (UTADIS) and 4.2% (QDA) with an aver-
age of 2.27%. Overall, the impact of the training set size is more signifi-
cant for SVM, QDA, and NN. SVM’s error rate for a training set size of
1000 objects is 14.11% lower compared to the error rate for a training set
size of 200 objects. Similarly QDA’s error rate decreases by 13.15%, whereas
NN’s error rate is increased by 19%. In terms of the relative performance
of the methods, SVM provide good results in all cases, followed by UTA-
DIS, whereas LOG and PNN provide similar results.

The above results are extended considering the interaction between the
number of training objects and the type of data. The corresponding results
are presented in Table 7. The results show that when continuous data are
considered, the increase of the training objects reduces the error rate of all



EVALUATION OF SOME CLASSIFICATION METHODS 45

Table 6. Test error rates (in %) with respect to the number of training objects

200 500 1000 F(p-value)

LDA 16.17 (3) 14.83 (3) 14.59 (3) 31.26 (<0.01)
QDA 17.87 (4) 16.20 (4) 15.52 (4) 59.81 (<0.01)
LOG 15.66 (2–3) 14.24 (2–3) 13.99 (2–3) 36.12 (<0.01)
NN 20.48 (5) 22.33 (5) 24.37 (5) 30.93 (<0.01)
PNN 15.73 (2–3) 14.29 (2–3) 13.99 (2–3) 35.99 (<0.01)
SVM 14.95 (1) 13.31 (1) 12.84 (1) 118.66 (<0.01)
UTADIS 15.26 (1–2) 13.78 (1–2) 13.72 (2) 39.33 (<0.01)

Table 7. Test error rates (in %) with respect to the number of training objects and the type of data

Data type Training objects F(p-value)

200 500 1000

Continuous LDA 18.02 (3) 16.06 (3–4) 15.89 (3–4) 28.57 (<0.01)
QDA 20.38 (5) 18.91 (6) 18.51 (6) 25.43 (<0.01)
LOGIT 17.49 (2–3) 15.45 (2–3) 15.23 (2–3) 30.44 (<0.01)
NN 19.47 (4) 17.64 (5) 17.35 (5) 41.07 (<0.01)
PNN 18.28 (3) 16.52 (4) 16.25 (4) 27.07 (<0.01)
SVM 16.09 (1) 13.93 (1) 13.37 (1) 110.19 (<0.01)
UTADIS 17.07 (2) 15.14 (2) 15.02 (2) 32.11 (<0.01)

Discrete LDA 14.31 (2) 13.62 (2) 13.28 (2) 9.30 (<0.01)
QDA 15.36 (3) 13.49 (2) 12.53 (1–2) 94.89 (<0.01)
LOGIT 13.82 (1–2) 13.03 (2–3) 12.74 (1–2) 11.77 (<0.01)
NN 21.49 (4) 27.03 (4) 31.40 (3) 88.44 (<0.01)
PNN 13.19 (1) 12.06 (1) 11.72 (1) 27.46 (<0.01)
SVM 13.81 (1–2) 12.68 (1–3) 12.32 (1–2) 32.82 (<0.01)
UTADIS 13.45 (1–2) 12.41 (1–2) 12.43 (1–2) 15.40 (<0.01)

methods (including NN). As noted earlier the reduction is higher when 500
objects are used instead of 200. The overall improvement of the error rate
(between 1000 and 200 objects) is higher for SVM (approximately 17%),
whereas the improvement for the other methods range between 9.2 (QDA)
and 12.9% (LOG). SVM always provide the best results, followed by UT-
ADIS. In the case of discrete data, PNN provide the best results followed
by UTADIS, and SVM. Once again the increase in the number of training
objects leads to reduced error rates (except for NN), with the most signifi-
cant improvement observed for QDA (18.4%). The improvements for the
other methods are lower compared to the case of continuous data, rang-
ing between 7.2 (LDA) and 11.1% (PNN).

4.4. the effect of the degree of correlation

As mentioned earlier, building classification models using correlated data
may have diverse effects on the expected error rates. The results of Table 8
show, that overall, the error rates are improved with correlated data (except
for NN). The only method that seems unaffected by the existing correla-
tions is QDA, whereas the performance of the other methods shows sig-
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Table 8. Test error rates (in %) with respect to the degree of correlation

Low correlation High correlation F(p-value)

LDA 15.80 (3) 14.59 (3) 48.75 (<0.01)
QDA 16.54 (4) 16.52 (4) 0.09 (0.76)
LOG 15.26 (2) 14.00 (2–3) 53.27 (<0.01)
NN 20.40 (5) 24.39 (5) 90.29 (<0.01)
PNN 16.34 (3–4) 13.00 (1) 384.86 (<0.01)
SVM 14.26 (1) 13.14 (1) 88.13 (<0.01)
UTADIS 14.97 (2) 13.54 (1–2) 80.53 (<0.01)

nificant improvement. The most significant improvement is observed for
PNN. Overall, it is apparent that the existing correlations in the data
can be an important factor when deciding which method to use. In the
low-correlation case, SVM provide the best results followed by UTADIS
and LOG, whereas in the high-correlation case PNN and SVM are the best
classifiers followed by UTADIS.

The interaction of the degree of correlation with the type of data was
also found to be an important issue in explaining the performance of the
methods. The corresponding results presented in Table 9, extend the above
analysis on the effect of the correlation on the error rates of the methods.
The results show that in the case of continuous data SVM and UTADIS
are the best methods for uncorrelated data, whereas for correlated data
PNN also provides good results. Also, considerable improvements (more
than 20%) are observed in the error rates of NN and PNN when corre-
lated data are used. The improvements for the other methods are smaller
ranging between 4.17 (LDA) and 7.84% (SVM). QDA is the only method
for which no significant differences are observed between the two cases (un-
correlated vs. correlated data). QDA’s performance is also robust in the dis-
crete data case with slightly reduced error rate for high correlation. For the
other methods, significant improvements are observed ranging between 7.87
(SVM) and 12.9% (UTADIS). PNN provide the best results with both un-
correlated and correlated data followed by SVM and UTADIS when un-
correlated data are used and by UTADIS in the case of high correlations.

4.5. synopsis of the results

Overall, the results of the experiment verify the effectiveness of most of
the non-parametric methods in developing classification models as opposed
to parametric techniques. In most cases, SVM outperformed the other
methods with the exception of correlated discrete data. The PNN pro-
vided good results for discrete data, but for continuous data they showed
medium performance compared to other techniques. UTADIS provided
robust results in most cases both in continuous and discrete data. On the
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Table 9. Test error rates (in %) with respect to the degree of correlation and the type of data

Continuous data Discrete data

Low High F(p-value) Low High F(p-value)
correlation correlation correlation correlation

LDA 17.01 (3) 16.30 (4) 7.46 (<0.01) 14.60 (3) 12.88 (3) 72.98 (<0.01)
QDA 19.16 (3) 19.37 (5) 0.54 (0.46) 13.91 (2–3) 13.67 (4) 1.98 (0.16)
LOG 16.56 (2–3) 15.55 (2–3) 14.79 (<0.01) 13.95 (2–3) 12.45 (2–3) 62.06 (<0.01)
NN 20.43 (5) 15.87 (3–4) 877.41 (<0.01) 20.38 (4) 32.90 (5) 566.32 (<0.01)
PNN 19.53 (4) 14.50 (1) 660.71 (<0.01) 13.15 (1) 11.49 (1) 98.31 (<0.01)
SVM 15.05 (1) 13.87 (1) 50.82 (<0.01) 13.47 (1–2) 12.41 (2–3) 44.86 (<0.01)
UTADIS 16.29 (2) 15.19 (2) 20.99 (<0.01) 13.64 (1–2) 11.88 (1–2) 102.79 (<0.01)

Table 10. Cumulative distribution of each method’s rankings

Ranking

1st 2nd 3rd 4th 5th 6th 7th

LDA 0.00 1.39 13.89 44.44 63.89 94.44 100.00
QDA 0.00 9.72 15.28 22.22 38.89 73.61 100.00
LOG 19.44 34.72 59.72 72.22 93.06 100.00 100.00
NN 0.00 1.39 11.11 19.44 29.17 37.50 100.00
PNN 29.17 51.39 62.50 68.06 80.56 94.44 100.00
SVM 36.11 51.39 69.44 83.33 94.44 100.00 100.00
UTADIS 19.44 51.39 68.06 91.67 100.00 100.00 100.00

other hand, NN have been found inappropriate for discrete data. From the
statistical techniques, logistic regression provided the best results which, in
some cases, were comparable to those of the non-parametric techniques.

Tables 10 and 11 provide a synopsis of the results. Table 10 is based on
the ranking of the methods from the one with the lowest error rate (1st)
to the one with the highest error rate (7th). The presented results involve
the cumulative distribution of the rankings for each method considering
all the experimental scenarios (factors combinations). In particular, each
entry (i, j) of Table 10 shows the percentage of the scenarios where method
i was ranked as j in terms of its test error rate. For instance, the entry
(LDA, 3rd) shows that LDA was ranked as the third best method in 10
out of 72 scenarios (13.89%) considered in the experimental analysis. The
results demonstrate the high performance of SVM which is ranked as the
best method in 26 scenarios (36.11%). The UTADIS was never ranked in
the two worst positions, where as in 91.67% of the total number of scenar-
ios it is ranked within the best four methods. On the other hand, PNN out-
performed the other methods in several cases, but there were also cases in
which PNN provided the worst performance (four scenarios, all for contin-
uous data).
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Table 11. Pairwise comparison of the methods

LDA QDA LOG NN PNN SVM UTADIS

LDA – 76.39 1.39 77.78 31.94 27.78 2.78
QDA 23.61 – 20.83 65.28 23.61 9.72 16.67
LOG 98.61 79.17 – 83.33 41.67 41.67 31.34
NN 22.22 34.72 16.67 – 11.11 0.00 12.50
PNN 68.06 76.39 58.33 88.89 – 40.28 52.78
SVM 59.72 90.28 56.94 100.00 58.33 – 54.17
UTADIS 97.22 83.33 66.67 87.50 47.22 45.83 –

Table 11 performs a pairwise comparison of the methods. Each entry
(i, j) of this table shows the percentage of the scenarios where method i

had a lower error rate than method j . This comparison, clearly demon-
strates the potentials of non-parametric techniques. PNN, SVM, and UTA-
DIS outperform all parametric methods (LDA, QDA, LOG) in the majority
of the cases.

5. Conclusions and Future Research

The experimental study presented in this paper analyzed the relative perfor-
mance of different methods in terms of specific data characteristics. Both
statistical techniques as well as non-parametric methods were analyzed.
The analysis was based on an experimental setup considering continuous
and discrete data.

The results suggest that, in most cases, non-parametric techniques (except
for NN) outperform the statistical approaches, with SVM, PNN, and UT-
ADIS providing the best results. SVM were found to provide good results
in cases of non-linear separation and mainly for continuous data. PNN
worked better for discrete data as well as for data with highly correlated
attributes. Finally, UTADIS showed good performance in cases of linear
class separation and managed to remain competitive to the other meth-
ods in most cases. From the three statistical methods, LOG provided the
best results, which, in some cases (mainly for linear class separation), were
found to be close (or even better) to the ones of the non-parametric tech-
niques. Finally, LDA and QDA were not found to be competitive to the
above methods despite the fact that the classification rules modeled in
the experiment (linear, quadratic) matched the modeling forms of the two
methods.

Such an experimental analysis could be extended in several aspects.
For instance, other non-linear class separation forms could be investi-
gated expect for the quadratic rule used in this analysis. The effect of
class overlap and the impact of irrelevant attributes are also issues for
future research. The introduction of additional classification methods, such
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as rule induction techniques, classification trees, and artificial neural net-
works, would also be useful in generalizing the findings of the analysis.
Furthermore, the analysis can be extended to consider the computational
aspects of the methods, as well as the similarities and dissimilarities in the
predictions of different methods with respect to data characteristics. This is
an important issue when considering the combination of different methods
in an ensemble model framework (Dietterich, 2000).
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